Tìm hiểu về Asen trong thực phẩm dưới góc độ khoa học
Mặc dù cá và hải sản là nhóm thực phẩm có lượng Asen toàn phần cao hơn, tuy nhiên lượng Asen vô cơ lại ở mức thấp [2, 16]. Đôi khi có ngoại lệ, ví dụ một số loại rong biển bao gồm hijiki (Hizikia fusiforme) có hàm lượng Asen vô cơ cực kì cao (arsenate >60mg/kg) [11]. Họ sò chẳng hạn như vẹm xanh (Mytilus edulis) cũng có hàm lượng Asen vô cơ tương đối cao từ 0,001đến 4,5 mg Asen/kg [17].
Trong khi sinh vật trên cạn thường chứa Asen dạng vô cơ, hầu hết Asen trong sinh vật biển là Asen hữu cơ ở mức từ 1 đến 100 mg Asen/kg trọng lượng [2]. Dưới đây là những dạng Asen hữu cơ phổ biến trong sinh vật biển:
Chuyển hóa Asen trong thực phẩm
Các loại thực phẩm khác nhau và tương tác giữa chúng khi chế biến, tiêu hóa ảnh hưởng đến hấp thụ hợp chất Asen trong cơ thể. Ngoài ra, hợp chất Asen tan trong nước dễ hấp thụ hơn hợp chất Asen tan trong dầu [2].
Các nghiên cứu ban đầu về hấp thụ và đào thải hợp chất Asen trong hải sản (chủ yếu là AB), cho thấy các chất này dễ hấp thụ và đào thải nhanh chóng [6, 27, 28]:
Cơ chế và độc tính của hợp chất Asen
Mặc dù qua nhiều năm nghiên cứu, cơ chế chính xác về độc tính của Asen vẫn chưa được làm rõ, lý do chính vì Asen phải trải qua các chuyển hóa trao đổi chất phức tạp trong cơ thể và chúng tương tác với các đại phân tử trong và ngoài tế bào.
Asen vô cơ, MA (methylarsenate) và DMA (dimethylarsenate) đều ức chế hô hấp của ty lạp thể dẫn đến hình thành các chất oxy phản ứng (ROS) có thể dẫn đến đột biến AND, vì vậy góp phần tiến triển ung thư và làm chết tế bào [34]. Hấp thụ Asen vô cơ với liều cấp tính có thể dẫn đến suy đa cơ quan và tử vong. Tiêu hóa Asen vô cơ mãn tính trong thời gian dài (ví dụ nước uống nhiễm Asen) có liên quan đến rất nhiều vấn đề sức khỏe chẳng hạn tổn thương da, ung thư phổi, bàng quang, thận và da, có hại trong quá trình phát triển ở trẻ, độc thần kinh, bệnh tim mạch, chuyển hóa glucose bất thường và tiểu đường [2].
Trong khi đó, AB (Arsenobetaine), một Asen hữu cơ phổ biến, được xem như chất không độc tính. Bên cạnh đó, các hợp chất Asen hữu cơ như TMAO, TETRA và AC (arsenocholine) được coi như không có độc tính mặc dù hợp chất TETRA có tính độc cao hơn AB [4, 36].
Ảnh hưởng từ việc lưu trữ và chế biến thực phẩm
Khâu chuẩn bị thức ăn có thể ảnh hưởng đến nồng độ và sự biến đổi các hợp chất Asen.
Đối với Asen vô cơ: Vo gạo, rửa thức ăn trước khi nấu và nấu với nhiều nước (nước không nhiễm Asen) sẽ làm giảm lượng Asen vô cơ [38-40].
Đối với Asen hữu cơ: Khi đun nấu hải sản ở nhiệt độ cao (trên 150°C), như nướng vỉ hay nướng lò, AB trong thịt sống biến đổi và sản xuất một lượng nhỏ TETRA. [42-45]. Tuy nhiên, nấu với nước (hầm, luộc hay hấp) không làm giảm lượng AB [154]. Một nghiên cứu khác cũng chỉ ra AB có thể bị phân hủy trong môi trường oxy hóa [46].
Những kết luận được tham khảo cho đến thời điểm hiện nay
Asen hữu cơ được đào thải ra khỏi cơ thể nhanh và ít độc tính hơn nhiều so với Asen vô cơ. Asen hữu cơ được xem là không có nguy cơ đối với sức khoẻ.
Phần lớn các kết luận về ảnh hưởng đến sức khoẻ được cho là từ phơi nhiễm Asen vô cơ. Theo báo cáo của Ủy ban liên hợp các chuyên gia của WHO/FAO về phụ gia thực phẩm, (JECFA – 2010), phơi nhiễm dinh dưỡng đối với Asen vô cơ ở Mỹ và nhiều nước châu Âu và châu Á dao động từ 0,1 đến 3.0 μg/kg trọng lượng cơ thể mỗi ngày và thực trạng phơi nhiễm đối với Asen vô cơ trong thực phẩm nhìn chung cũng ở mức thấp. [47]
TÀI LIỆU THAM KHẢO
[1] Borak J, Hosgood HD. Seafood arsenic: Implications for human risk assessment. Regul Toxicol Pharmacol 2007; 47 (2):204-212.
[2] EFSA. Scientific Opinion on Arsenic in Food. EFSA Panel on Contaminants in the Food Chain (CONTAM), 2009.
[3] WHO. Arsenic and arsenic compounds. World Health Organization, Geneva, 2001.
[4] Hughes M, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol Sci 2011; 123 (2):305-332.
[5] Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2007.
[6] Chapman A. On the presence of compounds of arsenic in marine crustaceans and shellfish. Analyst 1926; 51:548-563.
[7] Kuehnelt D, Goessler W. Organoarsenic compounds in the terrestrial environment, in: Craig P J (Ed.) Organometallic compounds in the environme nt, Wiley, Chichester, 2003, pp. 223-275.
[8] Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 2002; 36:962-968.
[9] Yuan C, Gao E, He B, Jiang G. Arsenic species and leaching characters in tea (Camellia sinensis). Food Chem Toxicol 2007; 45 (12):2381-2389.
[10] Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg AA. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Tech 2008; 42 (19):7542-7546.
[11] Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 2009; 43 (5):1612-1617.
[12] Torres-Escribano S, Leal M, Velez D, Montoro R. Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking,and risk assessments. Environ Sci Tech 2008; 42:3867-3872.
[13] Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu Y, Islam R. Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 2008; 42:1051-1057.
[14] Alava P, Du Laing G, Tack F, De Ryck T, VanDe Wiele T. Westernized diets lower arsenic astrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon. Chemosphere 2014; 119C:757-762.
[15] Rahman MA, Rahman MM, Reichman SM, Lim RP, Naidu R. Arsenic speciation in Australian-grown and imported rice on sale in Australia: implications for human health risk. J Agric Food Chem 2014; 62:6016-6024.
[16] Uneyama C, Toda M, Yamamoto M, Morikawa K. Arsenic in various foods: cumulative data. Food Addit Contam 2007; 24:447-534.
[17] Sloth JJ, Julshamn K. Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: revelation of unusual high levels of inorganic arsenic. J Agric Food Chem 2008; 56:1269-1273.
[18] Edmonds JS, Francesconi KA. Methylated arsenic from marine fauna. Nature 1977;265:436.
[19] Smith PG, Koch I, Reimer KJ. Arsenic speciation analysis of cultivated white button mushrooms (Agaricus bisporus) using high-performance liquid chromatographyinductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy.Environ Sci Technol 2007; 41:6947-6954.
[20] Lindberg A-L, Goessler W, Gurzau E, Koppova K, Rudnai P, Kumar R, Fletcher T, Leonardi G, Slotova K, Gheorghiu E, Vahter M. Arsenic exposure in Hungary, Romania and Slovakia. J Environ Monit 2006; 8:203-208.
[21] Silbergeld E, Nachman K. The environmental and public health risks associated with arsenical use in animal feeds. Environmental Challenges in the Pacific Basin. Ann New York Acad Sci 2008;
[22] Gueguen M, Amiard J-C, Arnich N, Badot P-M, Claisse D, Guerin T, Vernoux J-P.Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Rev Environ Contam Toxicol 2011; 213:55-111.
[23] Taleshi MS, Edmonds JS, Goessler W, Ruiz-Chancho MJ, Raber G, Jensen KB,Francesconi KA. Arsenic-containing lipids are natural constituents of sashimi tuna. Environ Sci Tech 2010; 44:1478-1483.
[24] Taleshi MS, Jensen KB, Raber G, Edmonds JS, Gunnlaugsdottir H, Francesconi KA .Arsenic-containing hydrocarbons: natural compounds in oil from the fish capelin, Mallotus villosus. Chem Comm 2008; 4706-4707.
[25] Rumpler A, Edmonds JS, Katsu M, Jensen KB, Goessler W, Raber G, Gunnlaugsdottir H, Francesconi KA. Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity? Angew Chem Int Ed Eng 2008; 47:2665-2667
[26] Schmeisser E, Rumpler A, Kollroser M, Rechberger G, Goessler W, Francesconi KA.Arsenic fatty acids are human urinary metabolites of arsenolipids present in cod liver.Angew Chem Int Ed Engl 2005; 45:150-154.
[27] Freeman HC, Uthe JF, Fleming RB, Odense PH, Ackman RG, Landry G, Musial C. Clearance of arsenic ingested by man from arsenic contaminated fish. Bull Environ Contam Toxicol 1979; 22:224-229.
[28] Tam GK, Charbonneau SM, Bryce F, Sandi E. Excretion of a single oral dose of fish arsenic in man. Bull Environ Contam Toxicol 1982; 28:669-673.
[29] Brown RM, Newton D, Pickford CJ, Sherlock JC. Human metabolism of arsenobetaine ingested with fish. Hum Exp Toxicol 1990; 9:41-46.
[30] Buchet JP, Lauwerys R, Roels H. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health 1981; 48:71-79.
[31] Francesconi KA, Tanggaar R, McKenzie CJ, Goessler W. Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 2002; 48:92-101.
[32] Raml R, Raber G, Rumpler A, Bauernhofer T, Goessler W, Francesconi KA. Individual variability in the human metabolism of an arsenic-containing carbohydrate, 2',3'-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a naturally occurring arsenical in seafood. Chem Res Toxicol 2009; 22:1534-1540.
[33] Schmeisser E, Goessler W, Francesconi KA. Human metabolism of arsenolipids present in cod liver. Anal Bioanal Chem 2006; 385:367-376.
[34] Fowler BA, Chou CSJ, Jones RL, Sullivan DW, Chen C-J. Arsenic, in: Nordberg G, Fowler B, Nordberg M (Eds.) Handbook of the Toxicology of Metals, Academic Press, Burlington, USA, 2014, pp. 581-624.
[35] International Agency for Research on Cancer (IARC). A review of human carcinogens. Part C: Arsenic, metals, fibres and dusts/ IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2009: Lyon, France). Lyon, France, 2012.
[36] Shiomi K, Horiguchi Y, Kaise T. Acute toxicity and rapid excretion in urine of tetramethylarsonium salts found in some marine animals. Appl Organomet Chem 1988; 385-389.
[37] Sele V, Sloth JJ, Lundebye A-K, Larsen EH, Berntssen MHG, Amlund H. Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future resea rch needs. Food Chem 2012; 133:618-630.
[38] Diaz OP, Leyton I, Munoz O, Nunez N, Devesa V, Suner MA, Velez D, Montoro R. Contribution of water, bread, and vegetables (raw and cooked) to dietary intake of inorganic arsenic in a rural village of Northern Chile. J Agric Food Chem 2004; 52:1773 -1779.
[39] Raab A, Baskaran C, Feldmann J, Meharg AA. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. J Environ Monit 2009; 11:41-44.
[40] Sengupta M, Hossain M, Mukherjee A, Ahamed S, Das B, Nayak B, Pal A, Chakraborti D. Arsenic burden of cooked rice: Traditional and modern methods. Food Chem Toxicol 2006; 44:1823-1829.
[41] Devesa V, Velez D, Montoro R. Effect of thermal treatments on arsenic species contents in food. Food Chem Toxicol 2008; 46:1-8.
[42] Dahl L, Molin M, Amlund H, Meltzer HM, Julshamn K, Alexander J, Sloth JJ. Stability of arsenic compounds in seafood samples during processing and storage by freezing. Food Chemistry 2010; 123 (3):720-727.
[43] Devesa V, Suner MA, Algora S, Velez D, Montoro R, Jalon M, Urieta I, Macho ML. Organoarsenical species contents in cooked seafood. J Agric Food Chem 2005; 53:8813-8819.
[44] Devesa V, Martinez A, Suner MA, Velez D, Almela C, Montoro R. Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood. J Agric Food Chem 2001; 49:2272-2276.
[45] Hanaoka K, Goessler W, Ohno H, Irgolic KJ, Kaise T. Formation of toxic arsenical in roasted muscles of marine animals. Appl Organomet Chem 2001; 61–66.
[46] Murer AJ, Abildtrup A, Poulsen OM, Christensen JM. Effect of seafood consumption on the urinary level of total hydride-generating arsenic compounds. Instability of arsenobetaine and arsenocholine. Analyst 1992; 117:677-680.
[47] FAO/WHO. Joint FAO/WHO Expert Commitee on Food Additives. Seventy-second meeting, Rome, 16–25 February 2010. Rome, 2010.
Tham khảo thêm thông tin tại bài viết: Tìm hiểu về ngưỡng của Asen trong thực phẩm
Chế độ ăn uống trong suốt thai kỳ là yếu tố quan trọng với sức khỏe của mẹ và thai nhi. Để đảm bảo an toàn cho con, bà bầu nên hạn chế, kiêng ăn những thực phẩm, đồ uống có nguy cơ ngộ độc cao, gây hại cho sức khỏe.
Ít ai biết rằng, táo không chỉ là loại quả bổ dưỡng mà còn đóng vai trò giúp cải thiện ham muốn tự nhiên. Vậy bằng cách nào và chúng có những dưỡng chất gì tốt cho “chuyện ấy”? Hãy cùng tìm hiểu ngay sau đây.
Bài viết này sẽ giúp bạn hiểu hơn về những thay đổi ở âm đạo mà phụ nữ có thể gặp phải sau khi sinh con và đưa ra những lời khuyên hữu ích để việc phục hồi sau sinh trở nên dễ dàng hơn.
Viêm tai là một tình trạng khá phổ biến, đặc biệt ở trẻ em. Mặc dù có thể tự điều trị tại nhà cho một số trường hợp nhẹ, nhưng việc hiểu rõ những gì nên và không nên làm là rất quan trọng để tránh làm tình trạng bệnh trở nên nghiêm trọng hơn.
Trước và trong quá trình mang thai, chị em cần bổ sung một số vi chất cần thiết cho sự phát triển của thai nhi. Bên cạnh chế độ ăn uống, bà bầu còn cần sự hỗ trợ của thực phẩm chức năng và viên uống vitamin tổng hợp.
Không khí lạnh kéo đến mang theo nhiều nguy cơ đối với sức khỏe tim mạch. Các cơn huyết áp, đột quỵ, nhồi máu cơ tim, suy tim...có khả năng bột phát, nhất là những người cao tuổi hoặc người có các bệnh lý nền. Để phòng ngừa những rủi ro liên quan và có một mùa đông ấm cúng bên cạnh gia đình, hãy cùng Viện Y học ứng dụng Việt Nam tìm hiểu một số lưu ý quan trọng về bệnh tim mạch trong bài viết dưới đây nhé!
“Carcinogen” là tác nhân có khả năng gây ung thư. Đây là những chất có thể làm thay đổi cấu trúc DNA hoặc quá trình phân chia tế bào, dẫn đến sự phát triển không kiểm soát của các tế bào và hình thành khối u ác tính. Hãy cùng Viện Y học ứng dụng Việt Nam tìm hiểu về các tác nhân gây ung thư phổ biến trong bài viết dưới đây.
Chế độ ăn uống đóng vai trò quan trọng với người viêm amidan. Vậy bị viêm amidan nên ăn và kiêng thực phẩm gì để chóng khỏi bệnh?